Sparse Signal Processing With Linear and Nonlinear Observations: A Unified Shannon-Theoretic Approach
نویسندگان
چکیده
منابع مشابه
A Unified Approach to Sparse Signal Processing
A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate an...
متن کاملNonlinear Signal Processing - A Statistical Approach
Description: Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed...
متن کاملA Unified Approach to Antenna Array Signal Processing
This chapter unifies the principles and analyses of conventional signal processing algorithms for receive-side smart antennas, and compares their performance and numerical complexity. The chapter starts with a brief look at the traditional single-antenna optimum symbol-detector, continues with analyses of conventional smart antenna algorithms, i.e., statistical beamforming (BF) and maximal-rati...
متن کاملA Signal Processing Approach to Estimate Underwater Network Cardinalities with Lower Complexity
An inspection of signal processing approach in order to estimate underwater network cardinalities is conducted in this research. A matter of key prominence for underwater network is its cardinality estimation as the number of active cardinalities varies several times due to numerous natural and artificial reasons due to harsh underwater circumstances. So, a proper estimation technique is mandat...
متن کاملSparse Recovery with Linear and Nonlinear Observations: Dependent and Noisy Data
We formulate sparse support recovery as a salient set identification problem and use informationtheoretic analyses to characterize the recovery performance and sample complexity. We consider a very general model where we are not restricted to linear models or specific distributions. We state nonasymptotic bounds on recovery probability and a tight mutual information formula for sample complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2017
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2016.2605122